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Tight analysis of FedAvg when clients are
heterogeneous (non iid data)

Explain degradation of FedAvg via the
‘drift in the client updates

Prove SCAFFOLD is resilient to
heterogeneity and client sampling



Federated Learning: Setting [McMahan et al. 2016]
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Federated Learning: [McMahan et al. 2016]

In each round,
e Some subset of clients
are chosen
e copy of server model is

sent to clients
@ e model is updated using
client data
{a} {a} {a} e Client updates are
cC_— ) cC— cC— aggregated
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Federated Learning: Characteristics

-8

data

model

High overhead per round

Only a few clients participate in
each round

The data of the clients is
heterogeneous: i.e. data drawn
from different distributions for
different clients



Cross-Silo vs Cross-Device Federated Learning

Cross-Silo FL

e Small/medium number (2-100,
typically) of total clients

e E.g. hospitals, financial organizations
e Large amount of data per client

e Persistent clients: almost always
available

e Stateful clients: clients can carry state
from round to round

Cross-Device FL

Very large number (e.g. 10'°) of total
clients

E.g. mobile or loT devices
Small amount of data per client

Transient clients: only a fraction of
clients available at any time

Stateless clients: clients generally
participate only once in each task




Cross-Silo Federated Learning: Formalism

Expectation over

1 N CIieJntdata
min — » B [ﬁf\zv; Q)]

Model Loss function wrt
parameters average over parameters and
clients client data
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Algorithms for
Cross-Silo
Federated Learning



Solving FL: SGD

e oneachclientiin S compute a large batch + Equivalent to Synchronous
stochastic gradient and average them _
centralized large-batch

training
[
r =7 — — g; (g;) - very slow (only 1 update)
S = K
1 pr—
N\ jv\
/ Mini-batch gradient with

Average over all Batch size K per client

sampled clients
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Solving FL: [McMahan et al. 2016]

e oneachclientiin S perform K steps of SGD + Potentially faster

Yi — Yi — 77975(%)

(performs K updates)

- different from centralized
updates

e Server model is an average of client models - may not converge

Average over all

sampled clients
E Yi *

’LES 13



Solving FL: SCAFFOLD

e oneachclientiin S perform K steps of SGD

yi = i —n(9i(y:) +c —c

i)

f

Correction term!

J

|
Repeat K times

1
e Average as before €T — § E yz

1€S

New!

Potentially faster
(performs K updates)

mimics centralized
updates!
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When does
FedAvg fail?



FedAvg degrades with heterogeneous clients

CIFAR-10 Learning Curves
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Client updates:

Surface of two client
loss functions, and the
combined function
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Client updates: SGD

The limit point of SGD is the
optimum.
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.

Client updates: FedAvg
// \
fa /

/%‘

YL

19



Client updates: FedAvg

Moves away even if we
start at the optimum.
FedAvg does not
converge to optimum!
Requires small learning
rate to get close

f2
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Drift in client updates SGD vs. FedAvg

21



Convergence Rates:

e For strongly convex

uRK N

—H—@Xp

1L

)

e For non-convex functions

o)

AL

VRK

N

L

R

Notation:

R communication rounds
K local steps

Total N clients

L - smooth, u - strongly convex

O - variance within a client
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Convergence Rates:

Assume: (B,G)-similar gradients

Generalizes [Li et al. 2019] and
[Khaled et al. 2019]

E: ||V fi(x)||> < G? + B?||Vf(x)||?

e For strongly convex

N—I—exp(

=00

",
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Convergence Rates:

e For strongly convex Assume: (B,G)-similar gradients
—uR LG —uR
N + exp (T) N + R + exp <—L
e For non-convex functions
/

L L3G3 [

IRt N .

R i R3 "R




Lower bound:

Assume: (B,G)-similar gradients

LG —

Theorem: For any G, we can find
functions with (2, G)-similar
gradients such that FedAvg for K>1 N 4

with arbitrary step-sizes always has ,U2 R2 L
error 5
> G T
" Necessary!
pRR? ’
1 42
N + i, + -
R3 R




Quick demo:

FedAvg with different learning rates

107 - Fed_Avg_eta/10
Fed_Avg_eta/50 . .
—— Fed_Avg_eta/200 e Linear regression
- Fed_Avg_eta/500
- — SGD e concrete dataset (UCI)
& e 10 clients (no sampling)
IS : e K =10 local steps
o A
2
(@]
-l
10° 4 > FedAvg needs

0 2000 4000 6000 8000 10000
Communication rounds > than SGD
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SCAFFOLD:
stochastic controlled
averaging



Use control variates
// <///

e Guess direction of server o5 —
I/
update C "

e (Guess direction of
client update Cj

e Use the correction (C — C;

A



Main ldea: Corrected updates

vi = ¥i — 1(9:(yi) +[C - Cz’])

Correction

Mimics centralized updates! \

r=
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Updating control variates

C; —[1(
C = %1(9& + ¢i)
C; :E




Algorithm

Algorithm 1 SCAFFOLD: Stochastic Controlled Averaging for federated learning

I|
2
3
4
5:
6
7t
8
9

10:
1%
12:
13:
14:
15:
16:

17

18

. for each communication round » =1,..., R do
select a subset of clients S C {1,...,N}
communicate (z,c) to all clients i € S
on each client i € S do

initialize local parameters y; < @

for each local step £k =1,..., K do

compute a stochastic gradient. gi(g) of f;

: server input initial parameters x, control variate ¢, and global step-size 7,
: for each ¢ local control variate ¢;, and local step-size 1

¥ migly) ¢ ¢

> local updates with correction

end for

c;" + (i) gi(x), or (ii) ¢; —c+ K%ﬂ(a: — ;)

> compute new control variate

communicate (Ay;, Ac;) «+ (y; — @, ¢, — ¢;)
C; Cj—
end client
1 1
Az + 13 > icsOg; and Ae + S Y acs NG

T x+ngAzx and c <+ c+ b‘f,—lAc
: end for

> update control variate

> aggregate client outputs

> update parameters and control
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Lower is better

Suboptimality

103 R

107

101 B

103 B

10'1 B

Quick demo

SCAFFOLD vs. SGD vs. FedAvg

— SCAFFOLD _eta
SGD
— Fed_Avg_eta/50

0 2000 4000 6000 8000 10000
Communication rounds

Linear regression
concrete dataset (UCI)
10 clients (no sampling)
K =10 local steps

> SCAFFOLD works with
as SGD

> than SGD!
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SCAFFOLD: Client sampling

e Updates of every client mimics
centralized updates.

e Few #clients works, as long as control
variates are accurate.

e Hence, very robust to client sampling.

Different view: SAGA s a special case of
SCAFFOLD with client sampling
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Variance reduced convergence Rates

Notation:

e For strongly convex functions L
e R communication rounds

S .
N + exp (_ i {% | N} R> e S outof N clients sampled

e L -smooth, u - strongly convex
e For non-convex functions

2
N + (E) i £ > Better than FedAvg!
S
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SCAFFOLD: Why take more than 1 step?

e Each update mimics a centralized
update => local steps should help.

e In worst case not true [Arjevani &
Shamir, 2015] (

e Possible if similar Hessians!
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Why take more than 1 step?

(Bounded Hessian Dissimilarity)
V2 fi(x) = VEf(2)]| <6

And is §-weakly convex.

Note that
0 < L, and typically § < L
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Why take more than 1 step?

Assume: ¢ - BHD, quadratics Notation:

e For strongly convex functions ® R communication rounds

e All N clients participate

—uRK
L+ (pu+0o

—uR
)K) ~ N + exp (ﬁ){ e Klocal steps

N—I—exp(

e L -smooth, u - strongly

Y - ion
For non-convex functions convex

L+ oK )
N + T NNJFE
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Why take more than 1 step?

Assume: § - BHD, quadratics

e For strongly convex functions
—uRK —uR
N +e ) ~N +e (—){
Xp(L+(u+6)K VI
e For non-convex functions

N +

L+6K _
RK

N+

U
R

> Best to take K ~

Sl

> We in the rates
(typically 6 <<L)

> First rate to characterize improvement
due to local steps!
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103

loss

1073

100

loss

10—20

100 4

Why take more than 1 step?

10710 4

G =100
103 | 103 |
N
N
N
N
N
Y
Y
\\
0 ] 0 ] -
o 107 == 6D, k=,
FedAvg, K =2
—— FedAvg, K =10
10_3 10_3 1§ T T

100 -

10—10 ]

10—20

T T

0 20 40 60
rounds

T T T

0 20 40 60
rounds

100 -

10—10 i

10—20

-==- SGD,K=1
- Scaffold, K = 2
—— Scaffold, K =10

1

T

0 20 40 60

rounds

Quick demo on scalar quadratics

e Scaffold is unaffected by G

e Larger Kis better

e K=2is 2 times faster

e K=10is only 4 times better
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Experiments



Experimental Setup

Extended MNIST (balanced) dataset

Multi-class logistic regression (47 classes)

Partitioned into N clients

Sorted by labels and then ‘slightly shuffled” before splitting
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Performance of SCAFFOLD

Training loss Train accuracy — [Test accuracy

= SGD = FedAvg = SCAFFOLD |= SGD = FedAvg = SCAFFOLD |= SGD = FedAvg™ = SCAFFOLD

0.075

250 500 750
Communication rounds -->

Similarity = 0, 1 Epoch, #sampled clients = 20, total clients = 400



Effect of similarity

Similarity = 0%

= SGD == FedAvg == SCAFFOLD

O. 5 w"f

'; 100 200 300 400
-~ Commdnication rounds -->

Similarity = 10%

[10.3

100 /2«00 300 400

= SGD = FedAvg = SCAFFOLD

g
il
-

Similarity = 100%

- j(;‘}D/n-”Fé"aA" vg = SCAFFOLD

0.5

?/

| 0.4

| 0.3

100 /200 300 400

Test accuracy, 10 Epochs, #sampled clients = 20, total clients = 100’



Effect of number of clients

Test accuracy

= FO5 = F20 = F50 = S05 = S20—=-S50

200 400 600 800
Communication rounds -->

SCAFFOLD with 5 clients is
better than FedAvg with 50!

> Total #clients = 400

> Total #categories = 47
> 1 Epoch per round

> Similarity = 0
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Degradation of FedAvg is due to the . If you use FedAvg, use
separate server and client step-sizes.

Why you should use
o Provably converges faster than SGD and FedAvg

o Resilient to heterogeneity and client sampling

Main limitation: requires maintaining client state, so applicable only to
cross-silo FL
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Cross-Silo vs Cross-Device Federated Learning

Cross-Silo FL

e Small/medium number (2-100,
typically) of total clients

e E.g. hospitals, financial organizations
e Large amount of data per client

e Persistent clients: almost always
available

e Stateful clients: clients can carry state
from round to round

Cross-Device FL

Very large number (e.g. 10'°) of total
clients

E.g. mobile or loT devices
Small amount of data per client

Transient clients: only a fraction of
clients available at any time

Stateless clients: clients generally
participate only once in each task

46



Cross-device Federated Learning:

min
£

Model
parameters

Li~D

f

Sum over client data

/
1
filz) == — > filz;6)
Y y=1

Expectation over
(possibly infinitely
many) clients

47



Algorithms for
Cross-Device
Federated Learning



Solving FL: SGD with (server) momentum

[Assume only 1 client per round]

v=x—nx*(Vfi(z)+*m)
/ -  Communicates every

Update server update round
parameters

m =V fi(z) + Sm
AN

Update server
momentum

+ Convergence guaranteed

49



Solving FL:

[Assume only 1 client per round]

vi = Yi — NV fi(yi)

<+ x—n(Vfi(y)+ Bm)

Update server parameters

m =V fi(x) + fm

+ Convergence guaranteed

- Communicates every
update round

50



Solving FL:

e Starting from x, run K local updates

Yi = Yi — vai(yi)

e Use (x-y,)as apseudo-gradient.

r=xz—n*x{xr—y;}+68xm)
AN

Update server parameters

[McMahan et al. 2016,
Hsu et al. 2019,
Reddi et al. 2020]

+ Communicates only
every K updates

- bad convergence due to
client drift (though
momentum helps!)
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Solving FL: Mime with momentum

e Apply server momentum locally in the clients + Communicates only

( every K updates
yi = yi — 1 * (Vfi(yi) HB + m) o
Y

J

Fixed server

Repeat K times momentum

+ Reduce client drift using

(fixed) server momentum!

e Momentum is computed globally (at server) and applied
locally (at clients)

m = Vfi(z) + Bm
AN

Update server momentum

+ Extends to Adam, etc.
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Solving FL: Mime with momentum

FEDAVG updates

MIME updates

Figure 1: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps
and momentum parameter 5 = 0.5. The local SGD updates of FEDAVG (shown using arrows for
client 1 and client2) move towards the average of client optima “-* which can be quite different
from the true global optimum «”. Server momentum only speeds up the convergence to the wrong
point in this case. In contrast, MIME uses unbiased momentum and applies it locally at every update.

This keeps the updates of MIME closer to the true optimum ="
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adapting optimizers to FL setting

Base optimizer updates: given gradient g and current internal state s
(e.g. momentum, Adagrad/Adam accumulators, etc.) E.q. SGD with momenturn:

T« x—nl(g,s), z < x—n(g+ Lm)
s < V(g,s). m < g+ fm
Mime server update: update state s using gradients from clients:

S V(ISLI Y iew Vi), s)

Mimelite client update: obtain x and state s from server and repeat K
times starting from y = x:

Y Y — UU(Vfi(y, £), 8)
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adapting optimizers to FL setting

Base optimizer updates: given gradient g and current internal state s
(e.g. momentum, Adagrad/Adam accumulators, etc.)

€T < m_771/{(978)7
s+ V(g,s).
Mime server update: update state s using gradients from clients:

S V(ISLI Y iew Vi), s)

Mime client update: obtain x and state s from server and repeat K times
starting from y = x:

y y— U (Vi(®,€) = V(2,6 + §,e5V (), 5)
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Algorithm 1 Mime and MimeLite

input: initial « and s, learning rate 7 and base algorithm B = (U, V)
foreachroundt =1,--- ,7 do

sample subset S of clients

communicate (x, ) to all clients 7 € S

communicate ¢ ﬁ > ics Vfi(x) (only for Mime)

on client 7 € S in parallel do
initialize local model y; < x
fork=1,--- ,K do
sample mini-batch ¢ from local data

Yi + Yi — UV fi(yi;¢) — Vfi(z; () + ¢, 8) (Mime)

i < yi — nU(Vfi(yi; ¢), s) (MimeLite)
end for
compute full local-batch gradient V f; ()
communicate (y;, V f;(x))
end on client
T I_Sl—l Y ics Yi-and 8 V(Ié—l > ies Vii(x), s)

end for

56



Analysis

e G2-Bounded

LinD ||V fi(T) —

e []- Bounded

|V? fi(z; &)

mm]E i~D | filT

A

parameters clients

Client data

X

Zfz:vfy

Vi)|? <G

~Vif(a)] <6
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Convergence rates

Algorithm Non-convex p-Strongly convex Assumptions
SERVER-ONLY
G? L 2
SGD [8] S + TP + P G*-BGD
3"
MVR [4] (5% +% - G2-BGD
FEDAVG !
G? G L G? G L 2
FedSGD [15] sz T T - 1iSE o + r G*-BGD
MIME 2
' G? ¢ G? 4 2
MimeSGD Se2 +36 7iSe =F 5 G*“-BGD, 6-BHD
MimeMVR (=)7+2 - G2-BGD, §-BHD

3 2
Lower bound [1] Q( = ) Q( TS?) G?-BGD .




Experiments



Momentum methods on EMNIST62 Adam methods on EMNIST62 Advantage of momentum on EMNIST62

0.86
d LN
- .,\N\v\‘,..ln/‘]
(9] . .‘JVW v
© _por ‘
5 0.78 1 - | ol
9]
o o — AN — FedsGDm, f=0.9
—— FedSGDm —— FedAdam e QUmeSG0m; fr=i2
—— MimeSGDm —— MimeAdam FedSGD, =0
—— MimeLiteSGDm —— MimeLiteAdam MimeSGD, B=0
070 T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
- Momentum methods on Cifar100 Adam methods on Cifar100 Advantage of momentum on CIFAR100
—— FedSGDm, $=0.9
—— MimeSGDm, B=0.9
FedSGD, B=0
3 MimeSGD, B =0
2 V
3 0.20 A 1 . AU
% — SGDm — Adam
— FedSGDm —— FedAdam
— MimeSGDm — MimeAdam
- MimeLiteSGDm —— MimeLiteAdam X
0.05 : : " r ; - : : - r T .
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
rounds rounds rounds

Figure 3: Server-only, FedAvg, Mime, and MimeLite with SGDm (left) and Adam (middle) run on
EMNIST62 (top) and CIFAR100 (bottom). Mime and MimeLite have very similar performance and
are consistently the best. FedAvg is often even worse than the server-only baselines. Also, Mime
makes better use of momentum than FedAvg, with a large increase in performance (right).

60



injects and helps reduce client drift.

momentum globally : it during each

Usefulness of local steps depends on Hessian variance.

update.
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Thank You.

Questions?



