
Optimization algorithms 
for heterogeneous clients in 

Federated Learning

Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, 
Sashank Reddi, Sebastian Stich, Ananda Theertha Suresh



Tight analysis of FedAvg when clients are 
heterogeneous (non iid data)

Explain degradation of FedAvg via the 
‘drift’ in the client updates

Prove SCAFFOLD is resilient to 
heterogeneity and client sampling

2



Federated Learning: Setting

Server
(e.g. Google)

Clients 
(e.g. hospitals, phones)

model

data

[McMahan et al. 2016]

3



Federated Learning: Setting
In each round,

● Some subset of clients 
are chosenx

4

[McMahan et al. 2016]



Federated Learning: Setting
In each round,

● Some subset of clients 
are chosen

● copy of server model is 
sent to clients

x

y y y

5

[McMahan et al. 2016]



Federated Learning: Setting
In each round,

● Some subset of clients 
are chosen

● copy of server model is 
sent to clients

● model is updated using 
client data

x

y y y

6

[McMahan et al. 2016]



Federated Learning: Setting
In each round,

● Some subset of clients 
are chosen

● copy of server model is 
sent to clients

● model is updated using 
client data

● Client updates are 
aggregated

● server model is 
updated

x

7

[McMahan et al. 2016]



Federated Learning: Characteristics

model

data

● High overhead per round

● Only a few clients participate in 
each round

● The data of the clients is 
heterogeneous: i.e. data drawn 
from different distributions for 
different clients

x

8



Cross-Silo vs Cross-Device Federated Learning

Cross-Silo FL

● Small/medium number (2-100, 
typically) of total clients

● E.g. hospitals, financial organizations

● Large amount of data per client

● Persistent clients: almost always 
available

● Stateful clients: clients can carry state 
from round to round

9

Cross-Device FL

● Very large number (e.g. 1010) of total 
clients

● E.g. mobile or IoT devices

● Small amount of data per client

● Transient clients: only a fraction of 
clients available at any time

● Stateless clients: clients generally 
participate only once in each task



Cross-Silo Federated Learning: Formalism

Model 
parameters average over 

clients

Expectation over 
client data

Loss function wrt 
parameters and 
client data

10



Algorithms for 
Cross-Silo 
Federated Learning

11



Solving FL: SGD
+ Equivalent to synchronous 

centralized large-batch 
training

- very slow (only 1 update)

● on each client i in       , compute a large batch 
stochastic gradient and average them   

Mini-batch gradient with 
Batch size K per clientAverage over all 

sampled clients

12



● on each client i in       , perform K steps of SGD

Solving FL: Federated Averaging (FedAvg) 
+ Potentially faster 

(performs K updates)

- different from centralized 
updates

- may not converge

Repeat K times

Average over all 
sampled clients

● Server model is an average of client models

13

[McMahan et al. 2016]



Correction term!

● on each client i in       , perform K steps of SGD

Solving FL: SCAFFOLD 
+ Potentially faster 

(performs K updates)

+ mimics centralized 
updates!

Repeat K times

● Average as before

14

New!



When does 
FedAvg fail?

15



FedAvg degrades with heterogeneous clients

16



Client updates: SGD vs. FedAvg

Optimum

Surface of two client 
loss functions, and the 
combined function

17



Client updates: SGD
The limit point of SGD is the 
optimum.

18



Client updates: FedAvg

19



● Moves away even if we 
start at the optimum.

● FedAvg does not 
converge to optimum!

● Requires small learning 
rate to get close

Client updates: FedAvg

20



Drift in client updates: SGD vs. FedAvg

21



● For strongly convex 

● For non-convex functions

Convergence Rates: SGD
Notation:

● R communication rounds

● K local steps

● Total N clients

● L - smooth, μ - strongly convex

● σ - variance within a client

22



Convergence Rates: SGD vs. FedAvg

● For strongly convex 

Assume: (B,G)-similar gradients

Generalizes [Li et al. 2019] and 
[Khaled et al. 2019]

23

SGD FedAvg



FedAvgSGD

Convergence Rates: SGD vs. FedAvg

● For strongly convex 

● For non-convex functions

Assume: (B,G)-similar gradients

24

Tightest rates, uses server and client step-sizes



Lower bound: FedAvg
Assume: (B,G)-similar gradients

Necessary!

Theorem: For any G, we can find 
functions with (2, G)-similar 
gradients such that FedAvg for K>1 
with arbitrary step-sizes always has 
error

25



Quick demo: SGD vs. FedAvg

● Linear regression
● concrete dataset (UCI)
● 10 clients (no sampling)
● K = 10 local steps

> FedAvg needs smaller 
learning rate

> Slower than SGD
26

Lo
w

er
 is

 b
et

te
r



SCAFFOLD: 
stochastic controlled 
averaging

27



● Guess direction of 
client update

Main Idea: Use control variates

● Guess direction of server 
update 

● Use the correction

28



Main Idea: Corrected updates

Correction 
terms

Mimics centralized updates! 

29



Main Idea: Updating control variates

+ +

+ +

30



SCAFFOLD: Algorithm

31



SCAFFOLD: Quick demo
● Linear regression
● concrete dataset (UCI)
● 10 clients (no sampling)
● K = 10 local steps

> SCAFFOLD works with 
same learning rate as SGD 

> Faster than SGD!

32

Lo
w

er
 is

 b
et

te
r



SCAFFOLD: Client sampling
● Updates of every client mimics 

centralized updates. 

● Few #clients works, as long as control 
variates are accurate.

● Hence, very robust to client sampling.

Different view: SAGA is a special case of 
SCAFFOLD with client sampling

33



SCAFFOLD: Variance reduced convergence Rates
● For strongly convex functions

● For non-convex functions

> Better than FedAvg!

Notation:

● R communication rounds

● S out of N clients sampled

● L - smooth, μ - strongly convex

34



SCAFFOLD: Why take more than 1 step?

35

● Each update mimics a centralized 
update => local steps should help.

● In worst case not true [Arjevani & 
Shamir, 2015] :(

● Possible if similar Hessians!



𝛿 - BHD (Bounded Hessian Dissimilarity)

And is 𝛿-weakly convex.

SCAFFOLD: Why take more than 1 step?

36

Note that



SCAFFOLD: Why take more than 1 step?
Assume: 𝛿 - BHD, quadratics 

● For strongly convex functions

● For non-convex functions

Notation:

● R communication rounds

● All N clients participate

● K local steps

● L - smooth, μ - strongly 
convex

37



SCAFFOLD: Why take more than 1 step?
Assume: 𝛿 - BHD, quadratics

● For strongly convex functions

● For non-convex functions

38

> Best to take

> We replaced L with 𝛿 in the rates 
(typically 𝛿 << L)

> First rate to characterize improvement 
due to local steps!



SCAFFOLD: Why take more than 1 step?

39

Quick demo on scalar quadratics

● Scaffold is unaffected by G

● Larger K is better

● K=2 is 2 times faster

● K=10 is only 4 times better



Experiments

40



Experimental Setup
● Extended MNIST (balanced) dataset
● Multi-class logistic regression (47 classes)
● Partitioned into N clients 
● Sorted by labels and then ‘slightly shuffled’ before splitting

41



Performance of SCAFFOLD

Similarity = 0, 1 Epoch, #sampled clients = 20, total clients = 40042

Communication rounds -->



Effect of similarity

Test accuracy, 10 Epochs, #sampled clients = 20, total clients = 10043

Communication rounds -->



Effect of number of clients

SCAFFOLD with 5 clients is 
better than FedAvg with 50!

> Total #clients = 400
> Total #categories = 47
> 1 Epoch per round
> Similarity = 0

44Communication rounds -->



Take aways

● Degradation of FedAvg is due to the client drift. If you use FedAvg, use 
separate server and client step-sizes.

● Why you should use SCAFFOLD:

○ Provably converges faster than SGD and FedAvg

○ Resilient to heterogeneity and client sampling

● Main limitation: requires maintaining client state, so applicable only to 
cross-silo FL

45



Cross-Silo vs Cross-Device Federated Learning

Cross-Silo FL

● Small/medium number (2-100, 
typically) of total clients

● E.g. hospitals, financial organizations

● Large amount of data per client

● Persistent clients: almost always 
available

● Stateful clients: clients can carry state 
from round to round

46

Cross-Device FL

● Very large number (e.g. 1010) of total 
clients

● E.g. mobile or IoT devices

● Small amount of data per client

● Transient clients: only a fraction of 
clients available at any time

● Stateless clients: clients generally 
participate only once in each task



Cross-device Federated Learning: Formalism

Model 
parameters

Expectation over 
(possibly infinitely 
many) clients

Sum over client data

Client loss function 
over the parameters 
and data

47



Algorithms for 
Cross-Device
Federated Learning

48



Solving FL: SGD with (server) momentum
[Assume only 1 client per round]

Update server 
momentum

Update server 
parameters

49

+ Convergence guaranteed

- Communicates every 
update round



[Assume only 1 client per round]

Solving FL: SGD with server momentum 

50

Update server parameters

+ Convergence guaranteed

- Communicates every 
update round

Update server momentum



● Starting from x, run K local updates

Solving FL: FedAvg with momentum 

Repeat K times

● Use (x - yi) as a pseudo-gradient.

51

[McMahan et al. 2016,
Hsu et al. 2019, 

Reddi et al. 2020]

Update server parameters

+ Communicates only 
every K updates

- bad convergence due to 
client drift (though 
momentum helps!)



● Apply server momentum locally in the clients

Solving FL: Mime with momentum 
+ Communicates only 

every K updates

+ Reduce client drift using 
(fixed) server momentum!

+ Extends to Adam, etc.

Repeat K times

● Momentum is computed globally (at server) and applied 
locally (at clients)

52

Update server momentum

Fixed server 
momentum



Solving FL: Mime with momentum 

53



E.g. SGD with momentum:

Mime framework: adapting optimizers to FL setting

54

Base optimizer updates: given gradient g and current internal state s 
(e.g. momentum, Adagrad/Adam accumulators, etc.)

Mime server update: update state s using gradients from clients: 

Mimelite client update: obtain x and state s from server and repeat K 
times starting from y = x:



Mime framework: adapting optimizers to FL setting

55

Base optimizer updates: given gradient g and current internal state s 
(e.g. momentum, Adagrad/Adam accumulators, etc.)

Mime server update: update state s using gradients from clients: 

Mime client update: obtain x and state s from server and repeat K times 
starting from y = x:



56



Analysis

parameters clients

Client data

loss function

57

● G² - Bounded Gradient dissimilarity:

● ẟ- Bounded Hessian dissimilarity:



Convergence rates

58



Experiments

59



60



Takeaways

● Momentum injects global information and helps reduce client drift.

● Compute momentum globally at server, apply it during each client update.

● Usefulness of local steps depends on Hessian variance.

61



Thank You.

Questions?

62


