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Role of Learning in Network Control

• Learning network state and dynamics
– Channels, connectivity, delays, etc.
– Multi-arm bandit framework

“multi-arm bandits with queues”

• Network control in uncooperative environments
– Some of the nodes are uncontrollable and/or unobservable
– Network optimization subject to stochastic queueing dynamics

• Performance optimization (i.e., delay)
– Use ML/RL to solve stochastic optimization problem with large state space
– Optimal routing, scheduling, etc.

• Control in adversarial environments
– Nodes intentionally take adversarial actions

“online learning framework”
– Networks under attack (DoS, traffic injection)
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Learning-based network control
(talk outline)

• Tracking Max-Weight (TMW):  Learning-aided Max-Weight algorithm
– Need to learn unknown underlay dynamics
– Focus on network stability

• Gradient sampling Max-Weight: Learning-based network utility maximization
– Need to learn unknown utility functions
– Feedback/actions subject to queueing delay
– Application to delay minimization

• Reinforcement learning algorithm for queueing networks
– General optimal control framework for queueing systems
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Network Model

• Multi-hop wireless network:  Only a subset of the links can be activated simultaneously, due 
to interference 

– Need to make packet routing and link scheduling decisions

• Random arrivals with arrival rates λc
– The λc’s are not known in advance 

• Time-slotted system
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• Goal:  Design a routing and scheduling policy that can support all arrival rates within 
the network stability region

• Stability Region (Λ*) – the set of all
admissible arrival rate vectors

– There exists some policy that will “stabilize” the
network with these arrivals

• Notions of stability
– Bounded queue occupancy

– Existence of steady state distribution

– Rate stability:  arrival rate = departure rate

• Tassiulas/Ephremides ‘92
– Scheduling and routing algorithm that stabilizes the network under unicast traffic

Throughput Maximization

Λ*
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The Max-Weight Scheduling Algorithm
(Tassiulas/Ephremides ’92)

• Only a subset of the links can be activated simultaneously. E.g., 

– Primary interference constraints 
A node transmits to a single neighbor at a time
Multiple transmissions can take place as long 
as they do not share a common node (e.g., Bluetooth)

– Secondary (2-Hop) interference constraints
No two edges can be active if they can be
joined by one or fewer edges (e.g., 802.11)

• Throughput optimal scheduling 

– Schedule the max-weight activation set in each time-slot 

– Weights are the queue backlogs
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The Backpressure Routing Algorithm
(Tassiulas/Ephremides ’92)

• Route based on commodities:  each commodity C ∈ {1,..,N} corresponds to data associated 
with a given destination node

• Along each link (a,b) route commodity C that maximizes the differential backlog along that 
link.  i.e., 

– Algorithms uses “back pressure” to find the routes

• Link activation: max-weight rule with differential backlogs as weights

– Joint routing and scheduling

• Backpressure “learns” the “optimal” routes and schedules using queue backlog as feedback
– Requires all nodes to cooperate: 

Share queue information
Implement the same policy 

                       π∈Π
π*  =  argmax W(a,b)

* (t)
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Impact of Uncontrollable Nodes

• Increasingly networks are only 
partially controllable

• A subset of nodes are not managed by 
the network operator and could use 
some unknown network control policy

• Existing optimal control policies may 
yield poor performance

• Overlay-underlay network: 
MaxWeight algorithm may lead to 
throughput loss
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Overlay Framework

• Overlay architecture is extremely common 
– Operate over a black-box whose internal dynamics are not known and may not 

even be observable
– e.g., over the top service providers, coalition networks

• Network control based on end-to-end feedback 
– Need to learn the dynamics of the underlay network

• Approach:  a combination of reinforcement learning and Lyapunov 
optimization to develop control algorithms based on end-to-end feedback

– Stability:  keep queues bounded
– Utility maximization
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Learning-based network control
(talk outline)

• Tracking Max-Weight (TMW):  Learning-aided Max-Weight algorithm 
– Need to learn unknown underlay dynamics
– Focus on network stability

• Gradient sampling Max-Weight: Learning-based network utility maximization
– Need to learn unknown utility functions
– Feedback/actions subject to queueing delay
– Application to delay minimization

• Reinforcement learning algorithm for queueing networks
– General optimal control framework for queueing systems

Q. Liang, E. Modiano, "Optimal Network Control in Partially-Controllable Networks,” Infocom, 2019.
B. Liu, Q. Liang, E. Modiano, “Tracking MaxWeight: Optimal Control for Partially Observable and 
Controllable Networks,” IEEE/ACM Transactions on Networking,” 2023.

http://www.mit.edu/~modiano/papers/CV_C_221.pdf
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Model

• Consider a queueing network with 𝑁 nodes and 𝐾 flows

• 𝑄!"(𝑡) is the queue length of flow 𝑘 at node 𝑖 in slot 𝑡

• In each time slot 𝑡, we observe a network event 𝜔# which includes information 

about link capacities, external packet arrivals, etc.

– {𝜔#}#$% follow a stationary stochastic process

• Each node 𝑖 needs to make a routing decision 𝑓!&"(𝑡) indicating the offered 

transmission rate for flow 𝑘 over link 𝑖 → 𝑗

– 0𝑓!&" 𝑡 = actual transmitted packets, may be smaller than 𝑓!&"(𝑡)
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Partially-Controllable Network

• The set of all nodes is denoted by 𝒩

– Network routing vector is 𝒇(𝑡) = 𝑓!"# 𝑡 !∈𝒩

• The set of controllable nodes is denoted by 𝒞

– Controllable action 𝒇&(𝑡) = 𝑓!"# 𝑡 !∈𝒞

– Controllable policy 𝜋&: 𝜔, 𝑸 ↦ 𝒇&

• The set of uncontrollable nodes is denoted by 𝒰

– Uncontrollable action 𝒇((𝑡) = 𝑓!"# 𝑡 !∈𝒰

– Uncontrollable policy 𝜋(: 𝜔, 𝑸 ↦ 𝒇(

Objective: design controllable policy 𝜋' such that the entire network is rate stable:

lim
#→)

𝔼 𝑄!"(𝑡)
𝑡 = 0, ∀𝑖 ∈ 𝒩, 𝑘.
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Queue-Agnostic Uncontrollable Policy

• Queue-agnostic uncontrollable policy (𝜔-only policy): 

𝜋*: 𝜔 ↦ 𝒇*

• Uncontrollable node simply observe the current network event 𝜔# and makes a 

routing decision

– “stateless” 

• Simple yet cover a wide range of practical protocols:

– Shortest-path routing (OSPF, RIP)

– Multi-path routing (ECMP)

– Randomized routing
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Failure of BP Algorithm

Failure of Backpressure (BP) Algorithm

• Each node can only transmit to one of its neighbors in each slot.

• Only one flow: 1 → 4 (with rate 20)

• Uncontrollable node 2 transmits to node 3 at full line rate.

• Uncontrollable node 3 holds any packets it received.

• Backlogs are always zero at node 2, so BP always sends packets to node 2 although they 

cannot be delivered.
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Classic Methods Might Fail

Why Backpressure (BP) Algorithm fails?

• Node 3 uses a non-work-conserving policy such that flow conservation law is not

preserved at node 3.

• However, BP is not aware of the behavior of node 3 since node 2 hides this fact from 

node 1.

• Lesson learned : A good network control algorithm must be aware of the uncontrollable 

policy and react accordingly.
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Tracking-Max-Weight (TMW) Algorithm

• TMW enhances the original Max-Weight algorithm with an implicit learning 

of the policy used by uncontrollable nodes

• TMW produces control actions for controllable nodes and generates an 

“emulated” action for uncontrollable nodes

• TMW aims to

– Stabilizing a virtual system with “emulated” uncontrollable actions

– Minimizing the gap between the “emulated” and the true uncontrollable action
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TMW - Details

• Let 𝒇*(𝑡) be the true action taken by uncontrollable nodes in slot 𝑡

• Let 𝒈(𝑡) = 𝒈' 𝑡 , 𝒈𝒖(𝑡) be the routing decisions generated by TMW

– 𝒈& 𝑡 is the action for controllable nodes

– 𝒈( 𝑡 is the “emulated” action for uncontrollable nodes

• Gap between 𝒇*(𝑡) and 𝒈* 𝑡 :

Δ!&" 𝑡 = 𝑔!&" 𝑡 − 0𝑓!&" 𝑡 , ∀𝑖 ∈ 𝒰

where 0𝑓!&" 𝑡 is the actual number of transmitted packets under offered rate 𝑓!&" 𝑡
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TMW - Virtual Queues

TMW maintains two types of virtual queues

• Virtual queue 𝑿(𝑡) is the backlog in the “emulated” system:

𝑋!"(𝑡 + 1) = 𝑋!" 𝑡 + 𝑎!" 𝑡 + K
&∈𝒩

𝑔&!" 𝑡 − K
&∈𝒩

𝑔!&" 𝑡
.

• Virtual queue 𝒀(𝑡) characterizes the cumulative difference between the 

“emulated” action and the true action:

𝑌!&" 𝑡 + 1 = 𝑌!&" 𝑡 + Δ!&" 𝑡 ,

where Δ!&" 𝑡 = 𝑔!&" 𝑡 − 0𝑓!&" 𝑡 , ∀𝑖 ∈ 𝒰

• TMW requires ability to observe underlay ( 0𝑓!&" 𝑡 )

– Sparse and noisy observations 
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TMW Algorithm

1. In each slot 𝑡, obtain 𝒈(𝑡) by solving the following problem:

max
𝒈 # ∈ℱ!"

K
!,&

K
"

𝑔!&" 𝑡 𝑊!&" 𝑡 ,

where

𝑊!&" 𝑡 = 𝑋!" 𝑡 − 𝑋&" 𝑡 − 𝑌!&" 𝑡 .

2. Apply 𝒈(𝑡) to controllable nodes

3. Update virtual queues 𝑿 𝑡 and 𝒀(𝑡)

• TMW uses BP routing on the virtual queues, offset by 𝑌

• The offset 𝑌 drives the emulated actions 𝑔* toward the actual actions 𝑓*, i.e., 

drives Δ → 0
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Example Revisited: Failure of BackPressure

• Uncontrollable node 2 transmits to node 3 at full line rate

• Uncontrollable node 3 holds any packets it received

• Backlog is always zero at node 2, so BP always sends packets to node 2

although they cannot be delivered

• With TMW 𝑌23 will continue to grow because node 3 does not send

• Create “backpressure” away from node 3 in “emulated” system

𝑊!&" 𝑡 = 𝑋!" 𝑡 − 𝑋&" 𝑡 − 𝑌!&" 𝑡 .

• Eventually node 1 will stop sending to node 2 and 𝑔23* will go to 0
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Performance of TMW

Theorem

If uncontrollable nodes use an 𝜔-only policy, and their state can be 

observed, then the TMW algorithm can stabilize the physical queue 𝑸(𝑡)

whenever possible

Proof

• Show that TMW can stabilize the two virtual queues 𝑿 𝑡 and 𝒀(𝑡)

• Show that if the two virtual queues 𝑿 𝑡 and 𝒀 𝑡 can be stabilized, then the 

physical queue 𝑸(𝑡) can also be stabilized
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Performance of TMW with Sparse Observations

• Delayed/Sparse Observations:

– Denote by 𝜏!(𝑡) the most recent time we have an observation of node 𝑖

– Denote by 𝐿! 𝑡 = 𝑡 − 𝜏!（𝑡）, the delay at 𝑡

Theorem: When ∑!"#$%&𝐿' 𝑡 /𝑇 = 𝑜(𝑇) for every 𝑖 ∈ 𝒰, then the TMW

algorithm can stabilize the physical queues 𝑸(𝑡) whenever possible

– As long as the average observation delay is sublinear in 𝑇, TMW is 

throughput-optimal for partially observable and controllable setting
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Performance of TMW with Noisy Observations

• Noisy observations

– Denote by 𝜖!&" 𝑡 the estimation error in 𝑊!&" 𝑡

– Estimation error in observation of underlay queues

Theorem: When 𝜖'()(𝑡) = 𝑜(𝑡) for every 𝑖 ∈ 𝒰 and 𝑘, then TMW can 

stabilize the physical queues 𝑸(𝑡) whenever possible

– If the estimation error grows sublinearly in 𝑡, TMW is throughput-

optimal

Includes case of constant noise (O(1))
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Simulation

Model

• All links have the capacity of 5

• Node 8, 9 and 13 are uncontrollable and unobservable

– Uniformly route 0~5 packets on each outgoing link
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Simulation: stability

Stability performance (sparse observation)

• Suppose the observations are sparse (nodes in 𝒰 can only be observed every 𝐿

time units).

• Max-Weight (i.e., BackPressure) fails to stabilize the system.

TMW L = 1   
TMW L = 10   
TMW L = 100       

TMW L = 1   
TMW L = 10   
TMW L = 100       
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Simulation: tracking of underlay

Tracking of underlay queue backlogs (sparse observation with 𝑳 = 𝟏𝟎)

• TMW quickly controls the gap between 𝑋!" and 𝑄!".
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Simulation: noisy observations

Stability performance with noisy observations

TMW  
TMW  
TMW  

TMW  
TMW  
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Learning-based network control
(talk outline)

• Tracking Max-Weight (TMW):  Learning-aided Max-Weight algorithm
– Need to learn unknown underlay dynamics
– Focus on network stability

• Gradient sampling Max-Weight: Learning-based network utility maximization 
– Unknown utility functions
– Application to minimum delay routing

• Reinforcement learning algorithm for queueing networks
– General optimal control for queueing systems

[3] Xinzhe Fu, E. Modiano, “Learning-NUM: Network Utility Maximization with Unknown
Utility Functions and Queueing Delay,” IEEE/ACM Transactions on Networking,” 2022.
[4] Xinzhe Fu, E. Modiano, “A Learning Approach to Minimum Delay Routing in Stochastic
Queueing Networks,” Infocom 2023.

http://www.mit.edu/~modiano/papers/CV_J_128.pdf
http://www.mit.edu/~modiano/papers/CV_J_128.pdf
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Network Utility Maximization (NUM)
with Unknown Utilities

• NUM objective:  maximize sum utilities subject to capacity constraints
– gi(r)  the “utility” of allocating rate r to class i traffic

• Previous works consider known utility functions
– E.g., proportional fairness: g(r) = log(r) 

• The utility functions may be unknown in advance
– User satisfaction (e.g., video quality)
– Average delay

• Key challenges/novelty:
– Unknown utility functions:  Power consumption of links,  delay, user satisfaction
– Feedback delay:  Function values are observed after decisions are made

Utility LearningNetwork Scheduling 

Utility Maximization

€ 

maximize :  g i (rii
∑ )

Subject to :   r∈ Λ ,  r ≤ λ
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Gradient Sampling Max-Weight (GSMW)

• Goal: Minimizing regret over time-horizon 𝑇

• The Gradient Sampling Max-Weight Algorithm
– Choose user rates: 𝑟!’s

– Use feedback to construct approximate gradients

gradient =  *! +!,- .*! +!.-
/-

– Use Max-Weight to determine the network routing and scheduling decisions: 
Ensure network stability:  constraint 𝑟 ∈ Λ

– Update the rate variables based on approximate gradients and queue lengths

𝑟" 𝑡 + 1 ≔ 𝑟" 𝑡 + #
$
⋅ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − 𝑉 ⋅ 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

• Primal-Dual Interpretation:
– Primal variables: rates 𝑟!’s
– Dual variables: queue lengths 𝑄0’s, corresponding to constraint 𝑟 ∈ Λ
– Update primal and dual variables based on gradient of the Lagrangian

Primal:  gradient – V * queue lengths
Dual: queue length dynamic

€ 

maximize :  g i (rii
∑ )

Subject to :   r∈ Λ ,  r ≤ λ
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Gradient Sampling Max-Weight (GSMW)

• Dealing with feedback delay

• The Parallel-Instance GSMW
– If feedback delay is Z slots, initiate Z instances of GSMW

– Since delay is unknown and time-varying, can generate “new” 
instances dynamically while waiting for feedback
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Gradient Sampling Max-Weight (GSMW)
Performance Guarantees

• Regret:  𝑅(𝑇)
– The cumulative difference between the utility achieved by the algorithm and the 

optimal over a time horizon of 𝑇 time slot

• When the feedback is noiseless: GSMW achieves R 𝑇 = O( 𝑇)

• When the feedback is noisy: GSMW achieves R = O max 𝑇, 𝑇(5.56)/2
– 𝛽 = noise parameter

Each observation is corrupted by an i.i.d. zero-mean random noise with standard deviation 
bounded by 𝑇% (𝛽 ≤ 0)

– Regret increases from O( 𝑇) to O(𝑇
&
') as noise increases

• Sublinear regret corresponds to “optimality” as the regret per unit time goes to zero

• Noise can represent imprecise measurement or feedback errors
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Simulation Results

• Parallel server network
• Utility is function of server and data rate

– Mix of logarithmic, polynomial and linear functions

• GSMW stabilizes the network 
and achieves sublinear regret

– Sublinear regret = asymptotic optimality

Queue-length Regret

• I.I.d noise Uniform [-noise, noise]
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GSMW: Minimum Delay Routing

• Minimum Delay Routing [1]
– 𝐾 paths 𝑃1, … , 𝑃2 from source 𝑠 to destination 𝑑
– Route incoming traffic of rate 𝜆 along the paths
– Capacity region Λ
– Compute the optimal rates 𝑟 = (𝑟1, … , 𝑟2)
– Flow on link e associated with rate vector r:  𝑓3+ = ∑#:3∈5( 𝑟#

• Assumptions:
– 𝐷3 𝑓3 is the delay of link 𝑒 when the rate is 𝑓3
– 𝐷3 is convex, non-decreasing and known

[1] R. Gallager, “A minimum delay routing algorithm using distributed computation." 1977.

Minimize ∑𝒆∈𝑬𝑫(𝒇𝒆𝒓)
s. t. ∑𝒌=𝟏𝑲 𝒓𝒌 = 𝝀 ,

𝒓 ∈ 𝚲 ,
𝒓𝒌 ≥ 𝟎, ∀𝒌.
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Minimum Delay Routing in Stochastic 
Queueing Networks

• Parallel M/M/1 Queues
– 𝜌' = r*/𝜇
– 𝔼+6 𝑄' 𝑡 = 𝜌'/(1 − 𝜌')
– Optimal: 𝑟1 = 𝑟/ = 𝑟7 =

8
7 .

• M/M/1 queues and 
deterministic queue

– Route more traffic to the 
deterministic queue.

The delay function depends on link characteristics that are unknown apriori.
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Minimum Delay Routing in Stochastic Queueing Networks

• Network Model
– Arrival rate 𝑎(𝑡), i.i.d., with 𝔼 𝑎 𝑡 = 𝜆
– Route the incoming packets along 𝐾 paths {𝑃1, … , 𝑃#}
– Static routing policy parameterized by routing vector 𝑟 = (𝑟1, … , 𝑟2)
– Queue length of link 𝑒 at time 𝑡: 𝑄3(𝑡)
– Steady-state queue length distribution under rate 𝑟: 𝜋+
– By Little’s law, 𝜆*(steady-state delay) = ∑3∈9𝔼:) 𝑄3 ≔ 𝐷(𝑟)

• Problem Formulation
– Find 𝑟 that minimizes 𝐷(𝑟)
– 𝐷(𝑟) is unknown, but queue lengths are observable
– Learn the delay function and the optimal static routing policy

Minimize D r ≔ ∑@∈A 𝔼B# 𝑄@
s. t. ∑"=CD 𝑟" = 𝜆 ,

𝑟 ∈ Λ ,
𝑟" ≥ 0, ∀𝑘.
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Minimum Delay Routing in Stochastic Queueing Networks

• Assumptions: 𝐷(𝑟) is a convex function of 𝑟
– Proved for single queues [1]
– We show the convexity for tandem queues via stochastic coupling
– It follows that convexity holds for networks with disjoint paths

• Static Routing vs. Dynamic Routing
– We study the optimal static routing policy that makes decisions independent of queue lengths
– Dynamic policies can outperform the optimal static policy, but few results are known
– In simulations, the optimal static policy outperforms common dynamic policies

Minimize D r ≔ ∑@∈A 𝔼B# 𝑄@
s. t. ∑"=CD 𝑟" = 𝜆 ,

𝑟 ∈ Λ ,
𝑟" ≥ 0, ∀𝑘.

[1] M. Neely and E. Modiano, “Convexity in queues with general inputs.” 2005.
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The Gradient Sampling Framework

• Projected Gradient Descent:
– 𝑟;,1 ≔ 𝑟; − 𝜂 ⋅ ∇𝐷 𝑟;
– Projected 𝑟; onto the feasibility region

• Gradient Sampling:
– Approximate 𝛻𝐷 𝑟; using values of 𝐷
– Randomly sample a perturbation vector 𝜖 of unit length 

– Approximate ∇D(r<) by T∇𝐷 𝑟; ≔ = +*,-> .= +*.->
/-

⋅ 𝜖

– 𝑟;,1 ≔ 𝑟; − 𝜂 ⋅ U𝛻𝐷 𝑟;

• Challenges:
– How to obtain the value of 𝐷(𝑟)?
– Performance guarantee of the whole procedure

[1] X. Fu and E. Modiano, “Learning-NUM: Network utility maximization with unknown utility functions and queueing delay.” 2022.
[2] A. Flaxman, A. Kalai, and H. McMahan, “Online convex optimization in the bandit setting: gradient descent without a gradient.” 2004.
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Estimating the Steady-State Delay

• Using queue-length observations to estimate steady-state delay
– Starting from 𝑡?, employs routing vector 𝑟 for duration 𝜏

lim
+→-

𝔼 𝑄. 𝑡/ + 𝜏 = 𝔼0! [𝑄.]

– Use queue-length observation at 𝑡? + 𝜏 (for a large enough 𝜏) to approximate 𝔼:) 𝑄3

• Proposition: 
– The error 𝔼 𝑄. 𝑡/ + 𝜏 − 𝔼0! 𝑄. 𝑡 decreases exponentially with 𝜏
– Analyze the convergence of countable-state Markov chain using Lyapunov drift arguments

Convergence of the average total queue lengths in a 
tandem network
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Gradient Sampling For Delay Minimization

• The Gradient Sampling Policy
– For each iteration 𝑡 = 1,…𝑇:
– Randomly sample a perturbation vector 𝜖
– Employ the static routing vector 𝑟; − 𝛿𝜖 for 𝜏 = log 𝑇 time slots 𝑡? + 1,… , 𝑡? + 𝜏

?𝐷(𝑟1 − 𝛿𝜖) as the total queue lengths at 𝑡/ + 𝜏.
– Employ the static routing vector 𝑟; + 𝛿𝜖 for 𝜏 = log 𝑇 time slots 𝑡? + 𝜏 + 1,… , 𝑡? + 2𝜏

?𝐷(𝑟1 − 𝛿𝜖) as the total queue lengths at 𝑡/ + 2𝜏.

– Approximate ∇D(r<) by T∇𝐷 𝑟; ≔
@= +*,-> .@= +*.->

/- ⋅ 𝜖

– 𝑟;,1 ≔ 𝑟; − 𝜂 ⋅ U𝛻𝐷 𝑟; . (Projected onto the feasibility region)

• Theorem: Let 𝑟∗ be the optimal routing vector. 𝐷 𝑟$ − 𝐷 𝑟∗ = 𝑂 -./ $
$

A
B

– Suitable values for 𝛿, 𝜂
– Proof: Bias and variance of the approximate gradients plugging in the dynamics of the 

gradient descent workflow
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Single-hop Network

• Link Type:
• Type 1: deterministic
• Type 2: uniform
• Type 3: bursty

• Load Level:
• Low: arrival = 4
• Medium: arrival = 8
• High: arrival = 12

• Policy:
• Uniform
• JSQ
• Gradient Sampling (GS)

Minimize ∑𝔼B# 𝑄!
s. t. 𝑟!≤ 5, 𝑖 = 1,2,3

∑!=C2 𝑟! = 𝜆
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Single-hop Network

• GS can “learn” the link type
– The bursty link should be 

avoided if possible
– GS converges to the optimal 

static policy, which outperforms 
JSQ

• The gap decreases with the load

Medium Load
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Disjoint Paths

• Link Type:
• Type 1: deterministic
• Type 2: uniform
• Type 3: bursty

• Policy:
– Uniform
– UMW
– GS

• Load Level:
• Low: arrival = 4
• Medium: arrival = 8
• High: arrival = 12

Minimize ∑@=CC5 𝔼B#[𝑄@]
s. t. 𝑟!≤ 5, 𝑖 = 1,2,3

∑!=C2 𝑟! = 𝜆
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Disjoint Paths

• Similarly as in the single-
hop network, GS learns to 
avoid the path of bursty
links
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The Abilene Network

• The Abilene Network
– Link rates scaled down by 10. 

Offered transmissions are 
generated from Poisson 
distributions.

– Two sources and one 
destination.

𝑆1: STTLng, arrival = 30
𝑆/: CHINng, arrival = 40
𝐷: ATLAng

• Policy:
– Uniform 
– UMW
– BackPressure
– GSMW [1]

[1] A. Sinha and E. Modiano, “Optimal control for generalized network-flow problems.” 2017.
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Extension To Wireless Networks

• The problem formulation and the gradient sampling policy can be 
extended to wireless networks

• Compute the optimal routing policy for the network with a given 
scheduling policy

– The queues still evolve following some underlying Markov chain
– The gradient sampling policy has the same guarantee if the delay function 

is convex

Minimize D r ≔ ∑@∈A 𝔼B# 𝑄@
s. t. ∑"=CD 𝑟" = 𝜆 ,

𝑟 ∈ Λ ,
𝑟" ≥ 0, ∀𝑘.
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Grid Topology: Wireless

• 3*3 Grid Network
– Type 2 (Poisson) and Type 3 

(bursty) links
– Source: 0, Destination: 8

6 paths
– Arrival rate: 8

• Scheduling Policy: Max-Weight

• Routing Policy:
– Uniform (source routing)
– UMW
– BackPressure (BP)
– GS
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Random Geometric Graph: Wireless

• Random Geometric Graph
– 20 nodes in a unit square
– Distance threshold 0.4
– Poisson links of rate 20
– Two source-destination pairs 

with arrival rates 4
• Scheduling Policy:

– Max-Weight
• Policy:

– Uniform (source routing)
– UMW
– BackPressure
– GS
– AugGS
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Learning-based network control
(talk outline)

• Tracking Max-Weight (TMW):  Learning-aided Max-Weight algorithm 
– Need to learn unknown underlay dynamics
– Focus on network stability

• Gradient sampling Max-Weight: Learning-based network utility maximization
– Need to learn unknown utility functions
– Feedback/actions subject to queueing delay

• Reinforcement learning algorithm for queueing networks [5]
– General optimal control for queueing systems

[5] Bai Liu, Qiaomin Xie, E. Modiano, "RL-QN: A Reinforcement Learning Framework for Optimal 
Control of Queueing Systems," ACM Trans on Modeling and Performance Eval of Computing Systems
(TOMPECS), 2022.

http://www.mit.edu/~modiano/papers/CV_J_127.pdf
http://www.mit.edu/~modiano/papers/CV_J_127.pdf
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Network performance optimization

• Most previous work focused on long-term throughput, utility
– Infinite time horizon, coarse performance metric

• Optimizing finer granularity metrics (e.g., queue-size) is challenging due to 
curse of dimensionality 

– Limited results for idealized settings

• Reinforcement learning has the potential to solve this problem
– Neural Nets:  promising but little insight
– Model-based RL (e.g., Upper confidence RL) holds promise for low-complexity 

insightful solutions

• Approach:  Use  RL to optimize performance in networks with unknown 
dynamics

– Challenge:  dealing with unbounded state-space due to queue-size
– Control actions affect the dynamics of uncontrollable nodes (through the queues)
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Queue-Dependent Uncontrollable Policy

𝜋*: 𝜔, 𝑸 ↦ 𝒇*

• Policy takes queue size into account

• Covers state-of-the-art dynamic routing and scheduling algorithms (e.g., 

BackPressure routing)

• Queue evolution dynamics may be unknown and arbitrary

𝑸(𝑡 + 1) = ℎ 𝒇'(𝑡), 𝑸(𝑡), 𝜔# ,

where ℎ(⋅) is some unknown function that depends on our controllable routing action 

𝒇&(𝑡), the current queue length vector 𝑸(𝑡), and the observed network event 𝜔;

• Optimization is a Markov Decision Problem (MDP)
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MDP Formulation

• Action: 𝒇'(𝑡)

• State: 𝑸(𝑡)

• State Transition Probabilities:

𝑃 𝑸E|𝑸, 𝒇'(𝑡) ,

evolve according to the queueing dynamics 𝑸(𝑡 + 1) = ℎ 𝑸(𝑡) .

• Objective: find a policy 𝜋∗ that minimizes the long-term average queue length

𝐽B = lim
G→)

1
𝑇K
#=%

GHC

𝔼 K
!"

𝑄!"B (𝑡) .
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Challenges in Solving the MDP

• This is an MDP with unknown dynamics

𝑸 𝑡 + 1 = ℎ 𝑸 𝑡 ,

i.e., Reinforcement Learning (RL) problem

• The state space (i.e., queue length vector space) 𝒬 is countably-infinite

• Existing RL algorithms do not have any performance guarantees in face of 

countably-infinite state space

• Possible approaches:

– Truncation:  Solve MDP for truncated system [Liang, Modiano, Infocom ‘18]

– RL-QN [Liu, Xie, Modiano, Allerton 19]

Optimal performance for queueing networks with unbounded state space
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Reinforcement Learning for Queueing Networks 
(RL-QN) Algorithm

For a Bounded State Space 𝒮!I

• Apply model-based reinforcement learning scheme

– E.g., Upper-confidence RL (UCRL); episodic 

exploration/exploitation scheme

• Converges to the optimal policy x𝜋∗

For the Rest of the State Space 𝒮J*#

• Use a known stabilizing policy 𝜋% (common in

communication network)

• Apply 𝜋% to the rest of the states

• Intuition:  in stable system the probability of the queue exceeding U decays

exponentially in U

Average cost goes to optimal 

as 𝒮"2 grows
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RL-QN Algorithm
(exploration vs. exploitation)

For episodes 𝑘 = 1, 2,⋯

• w.p. 𝑙/ 𝑘, do exploration

• Apply 𝜋+C0D to 𝓢𝒊𝒏

• Apply 𝜋? to 𝑺G(;

• w.p. 1 − 𝑙/ 𝑘, do exploitation

• Use history data to estimate the dynamics

of e𝑀

• Solve for estimated optimal policy g𝜋#
• Apply g𝜋# to 𝓢𝒊𝒏

• Apply 𝜋? to 𝑺G(;

• When visits to 𝓢𝒊𝒏 exceeds 𝐿 𝑘, start the 

next episode
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Performance of RL-QN

Theorem 1

For any 0 < 𝛿 < 1, there exists 𝑘∗ < ∞ such that our algorithm learns g𝜋∗ (i.e. g𝜋#
= g𝜋∗) within 𝑘∗ episodes with probability at least 1 − 𝛿

Theorem 2
Under our algorithm, the asymptotic episodic average cost is upper bounded as

lim
G→)

1
𝑇K
#=%

GHC

𝔼 K
!"

𝑄!"(𝑡) = 𝜌∗ + 𝒪
𝑈C.MNO 5P,Q

exp 𝑈

• We could get arbitrarily close to optimum by increasing 𝑈

• But larger 𝑈 brings heavier computational burden

• Key intuition:  in stable system the probability of the queue exceeding U decays 

exponentially fast in U

Optimal result

𝛼, 𝛾 > 0

Buffer size of the bounded system N𝑀

The optimal policy for the bounded system
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Simulation

Model

Which user to serve to minimize

the average total queue length?

• Stabilizing policy: serve the

longest connected queue

(LCQ) , can bound the queue

length [Tassiulas et al., 1993]

• Minimizing policy: open

problem (except for symmetric

cases)

• Reinforcement learning 

methods might work!

Buffered data packets
to be served (queue)

Stochastic arrival of
new data (unknown rate)

Connected to the server
with unknown

probability

Each time unit, server can select
one connected user and try to
serve one data packet, with

unknown success probability
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Simulation

Average queue backlog evolution 

• 𝜋%: serve the longest connected queue (LCQ)

• x𝜋∗ + 𝜋%: the result our algorithm converges to

Results when 𝑈 = 5 Results when 𝑈 = 10
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Summary

• Network control schemes typically assume known and controllable dynamics

• Unknown and/or uncontrollable dynamics give rise to the need for ”learning”

• “Learning” for achieving stability is relatively easy and can be accomplished via 

the queue dynamics

– Even traditional backpressure learns the optimal policy via the queue dynamics 

(primal dual interpretation of optimization problem)

• Learning for optimizing network performance is more challenging because 

control action affect network state

– Gradient sampling MaxWeight approach for network utility maximization

– RL-QN: optimizing performance for queueing networks with unbounded state-

space


