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Trading-off risk & return: min
θ : R(θ) ≥ r

ρ [L(X, θ)]

Minimize default risk in loan 
portfolios while meeting target 
return requirement

Managing power operations under 
volatile supply, demand and price 
risks

Minimize excess latency under 
supply and price risks

Minimize safety risk in cyber-
physical systems
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Conventional: Minimize average loss Minimizing risk measures

loss realizations L(X, θ)iid samples of X

excess loss 
scenarios

CVaR1−β [L(X, θ)]

excess-loss 
probability     = β

minimize sample average For minimizing sample average,

sample 
requirement  
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1
β
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requirement 

(Trinidade et al ’07)



excess loss 
scenarios

CVaR1−β [L(X, θ)]

excess-loss 
probability     = β

For minimizing sample average,

sample 
requirement  

=
1
β

× usual  
requirement 

Lim, Shanthikumar & Vahn  '11
Caccioli, Paap & Condor '18

Perils of minimizing 
sample average with 
insufficient samples:

Eg: for tail level β = 1/40,
to achieve 10% relative error in 
optimum portfolio's CVaR  for 
100 stocks,           

need ~14 years of  
daily returns data

Minimizing risk measures
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Copulas 
(Gaussian, t, Archimedean,…)

elliptical distributions
multivariate regularly varying

extreme value distributions
quantile regression models
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data
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model decision
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ρ(θ, ̂P)model parameters 

̂P

model-selection



data
estimate

model decision
optimize 
min

θ
ρ(θ, ̂P)model parameters 

̂P

model-selection

A statistical bottleneck: Incorrect distributional  model 
affects downstream optimization 

1

the need to carefully 
handle bias created by 

plugging-in a wrong 
distributional model



A statistical bottleneck: Incorrect distributional  model 
affects downstream optimization 

Handling model-bias:

‣ Better models

‣ Expressive model classes 

‣ Inject conservative bias with 
robust optimization



A statistical bottleneck: Incorrect distributional  model 
affects downstream optimization 

Handling model-bias:

‣ Better models

‣ Expressive model classes 

‣ Inject conservative bias with 
robust optimization

Pickands dependence function (Pickands ’81) 
d-max decreasing neural nets (Hasan et al ’22)



A statistical bottleneck: Incorrect distributional  model 
affects downstream optimization 

‣ Better models

‣ Expressive model classes 

‣ Inject conservative bias with 
robust optimization Worst-case CVaR and robust chance constraints

El Ghaoui ’03, Calafiore and El Ghaoui `06, 
Chen et al ’10, Zymler ’13, Natarajan et al 

’14, Hanasusanto et al ’15, ’17, Van Parys et 
al ’15, Van Parys et al ’16,  

Esfahani and Kuhn ’18, Lofti & Zenios ’18, 
Duan et al ’18, Jiang & Guan ’18, Xie ’18, Xie 

& Ahmed ’18, Li et al ’19, Xie & Ahmed ’19, 
Zhang et al ’18,   Ji & Lejeune ’21, Chen et 

al’22, Rahimian and Mehrotra ’22

Handling model-bias:



A statistical bottleneck: Incorrect distributional  model 
affects downstream optimization 

‣ Better models

‣ Expressive model classes 

‣ Inject conservative bias with 
robust optimization

 Convexity constraint (Mottet & Lam ’17)        
 Orthounimodal shape constraints (Lam et al ’21)

Handling model-bias:



A statistical bottleneck: Incorrect distributional  model 
affects downstream optimization 

‣ Better models

‣ Expressive model classes 

‣ Inject conservative bias with 
robust optimization

Given a distributional model,  
can we have an algorithm to “debias”  

the objective of its nonparametric 
model error? 

Handling model-bias:



A computational bottleneck:  
Rarity implies prohibitive no. of scenarios/samples required

data
estimate

model decision
optimize 
min

θ
ρ(θ, ̂P)model parameters 

̂P

21

prohibitive 
computation needed 

due to large number of 
samples/scenarios



A computational bottleneck:  
Rarity implies prohibitive no. of scenarios/samples required

Variance reduction techniques

‣ Importance sampling,  stratified sampling, 
control variates, etc.

‣ Importance scenario generation

‣ Problem-driven scenario generation
Fairbrother et al ‘19



A computational bottleneck:  
Rarity implies prohibitive no. of scenarios/samples required

Variance reduction techniques

‣ Importance sampling,  stratified sampling, 
control variates, etc.

‣ Importance scenario generation

‣ Problem-driven scenario generation
Fairbrother et al ‘19 Dantzig & Glynn '90 

Dantzig & Infanger '93 
Rubinstein & Shapiro '93 

Shapiro & Homem-de-Mello '98 
Nemirovski & Shapiro '06 

Barrera et al '14 
Kozmik & Morton '14 

Parpas et al '15 
Birge '12, Homem-de-Mello & Bayraskan '15 (reviews) 

Blanchet , Zhang & Zwart '20 
He, Jiang , Lam & Fu, '21



Prominent hurdles & solution approaches

‣ Even two random vectors proportional to each other can be 
“nearly singular” to each other in large dimensions

Nemirovski & Shaprio ‘06



Prominent hurdles & solution approaches
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sample 
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=
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β
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sample 
requirement  = ( 1

β )
o(1)

× usual  

Log-efficient samplerNaive Monte Carlo



Prominent hurdles & solution approaches

4 EFFICIENCY IN BLACK-BOX IMPORTANCE SAMPLING

Figure 1. Illustration of the notion of self-similarity of optimal IS distributions: Sam-
ples from the distributions Pl, Pu (displayed in blue and red respectively) reveal that
they share similar concentration properties for three distribution choices of X informed
by a Gaussian copula with correlation ⇢. The levels l, u are such that the probabilities of
L(X) exceeding these levels are approximately 10�3 and 10�5.5

. The contours (drawn in
green) represent level sets of L(x) = 1|(Ax� b)+ derived from a ReLU neural network
with weights given by the matrix A with rows (0.3, 1), (1, 0.3), (0, 1.1), (1.1, 0) and vector
b = 0.

1) (Novel & generically applicable IS) We present an entirely novel IS scheme which exhibits
asymptotically optimal variance reduction in black-box IS estimation of distribution tails of
objectives of the form L(X). To the best of our knowledge, this is the first instance to do so at
a generality which expands the scope of applicability of e�cient IS to settings where (a) L(·) is
modeled by tools such as mixed integer linear and quadratic programs, feature maps informed by
neural networks, etc., (see Assumption 1, Examples 2.1 - 2.3); and (b) the uncertainty is driven
by a wide variety of multivariate distributions (see Tables 1 - 3).

2) (Tail modeling framework and asymptotics) Building on the large deviations based ap-
proach introduced in de Valk (2016), we present a tail modeling framework for X which allows
characterization of the rates at which the distribution tail of L(X) decays. The asymptotic pre-
sented in Theorem 4.1 reveals how the distribution of X and the model specified by L(·) influence
the rates of decay of the distribution tail. We illustrate how these results can be of interest, in
their own right, by deriving operational insights for minimizing network failure probabilities in
product distribution networks (see Section 4.2).

3) (Automation in the selection of IS distribution) We utilize these large-deviations char-
acterizations to bring out the self-similarity of optimal IS distributions (Proposition 5.1) and
verify the variance reduction properties (Theorems 5.2 and 7.2). The self-similarity property
serves to guide the automated approach towards selection of IS distribution. While a variety
of methods exist for searching optimal parameters within a chosen IS distribution family (see,
for eg., Rubinstein & Kroese (2013), Ahamed et al. (2006), Lemaire & Pagès (2010), Bai et al.
(2020), He et al. (2021)), to the best of our knowledge, this is the first paper to exhibit an
automated approach for tackling the complementary and more challenging problem of selection
of IS distribution families with optimal variance reduction properties.

4) (Applications) We demonstrate the utility of the IS scheme and the large deviations charac-
terizations in the evaluation of the probability of (a) large losses in a credit risk setting modeled
with a deep neural network, (b) large delays in contextual routing, and (c) failures in distri-
bution networks (Sections 4.2, 6, 8 and Appendix E). The risk events in these settings can be
re-expressed to coincide significantly with an event of the form {L(X) > u}, and the reported
variance reduction serve to showcase the versatility and robustness of the IS scheme.

With the repertoire of models considered in quantitative risk management expanding to include ma-
chine learning based approaches, the proposed IS scheme serves as an entirely novel addition that extends
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Prominent hurdles & solution approaches

model 
(objective +  
distribution)

Step 1: Propose a 
"good" alternate 

distribution family to 
sample from

Step 2: Set up OPT for 
the best candidate in 

the family  sample &  
reweigh by 

likelihood ratio 
informed by large 

deviations analysis

Step 3:  
Solve OPT

• quadratic program (Glasserman et al  '00, '05)           
+ combinatorial structure (Glasserman et al'08)

For multivariate normal:

• Mixed-integer program (Bai et al '20)
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What is a good sampler for one decision  
choice is often not good for other

a bottleneck in optimization

(Barrera et al ’14)
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Prominent hurdles & solution approaches

Can we have samplers which are 
efficient & broadly applicable?
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How to integrate seamlessly with 
optimization?

Can we have samplers which are 
efficient & broadly applicable?



Prominent hurdles & solution approaches

How to integrate seamlessly with 
optimization?

Can we have an algorithm which adapts its  
Importance Sampling distribution to the objective at hand?

Can we have samplers which are 
efficient & broadly applicable?



`
Two questions in this talk

Q1: Can we have an algorithm which adapts its  
Importance Sampling distribution to the objective at hand?

(computational bottleneck)

Q2: Given a distributional model, can we have an algorithm to 
“debias”  the objective of its nonparametric model error? 

(statistical bottleneck)



A key observation  
and its implications for the two bottlenecks



Recall: Why efficient samplers are elusive?

4 EFFICIENCY IN BLACK-BOX IMPORTANCE SAMPLING

Figure 1. Illustration of the notion of self-similarity of optimal IS distributions: Sam-
ples from the distributions Pl, Pu (displayed in blue and red respectively) reveal that
they share similar concentration properties for three distribution choices of X informed
by a Gaussian copula with correlation ⇢. The levels l, u are such that the probabilities of
L(X) exceeding these levels are approximately 10�3 and 10�5.5

. The contours (drawn in
green) represent level sets of L(x) = 1|(Ax� b)+ derived from a ReLU neural network
with weights given by the matrix A with rows (0.3, 1), (1, 0.3), (0, 1.1), (1.1, 0) and vector
b = 0.

1) (Novel & generically applicable IS) We present an entirely novel IS scheme which exhibits
asymptotically optimal variance reduction in black-box IS estimation of distribution tails of
objectives of the form L(X). To the best of our knowledge, this is the first instance to do so at
a generality which expands the scope of applicability of e�cient IS to settings where (a) L(·) is
modeled by tools such as mixed integer linear and quadratic programs, feature maps informed by
neural networks, etc., (see Assumption 1, Examples 2.1 - 2.3); and (b) the uncertainty is driven
by a wide variety of multivariate distributions (see Tables 1 - 3).

2) (Tail modeling framework and asymptotics) Building on the large deviations based ap-
proach introduced in de Valk (2016), we present a tail modeling framework for X which allows
characterization of the rates at which the distribution tail of L(X) decays. The asymptotic pre-
sented in Theorem 4.1 reveals how the distribution of X and the model specified by L(·) influence
the rates of decay of the distribution tail. We illustrate how these results can be of interest, in
their own right, by deriving operational insights for minimizing network failure probabilities in
product distribution networks (see Section 4.2).

3) (Automation in the selection of IS distribution) We utilize these large-deviations char-
acterizations to bring out the self-similarity of optimal IS distributions (Proposition 5.1) and
verify the variance reduction properties (Theorems 5.2 and 7.2). The self-similarity property
serves to guide the automated approach towards selection of IS distribution. While a variety
of methods exist for searching optimal parameters within a chosen IS distribution family (see,
for eg., Rubinstein & Kroese (2013), Ahamed et al. (2006), Lemaire & Pagès (2010), Bai et al.
(2020), He et al. (2021)), to the best of our knowledge, this is the first paper to exhibit an
automated approach for tackling the complementary and more challenging problem of selection
of IS distribution families with optimal variance reduction properties.

4) (Applications) We demonstrate the utility of the IS scheme and the large deviations charac-
terizations in the evaluation of the probability of (a) large losses in a credit risk setting modeled
with a deep neural network, (b) large delays in contextual routing, and (c) failures in distri-
bution networks (Sections 4.2, 6, 8 and Appendix E). The risk events in these settings can be
re-expressed to coincide significantly with an event of the form {L(X) > u}, and the reported
variance reduction serve to showcase the versatility and robustness of the IS scheme.

With the repertoire of models considered in quantitative risk management expanding to include ma-
chine learning based approaches, the proposed IS scheme serves as an entirely novel addition that extends

çΩ

çΩçΩçΩ

level curves 
of loss 

u u u

excess loss samples X ∣ L(X) > uIn red:

X ~ multivariate normal X ~ heavier-tailed 
Weibull marginals + 

Gaussian copula

X ~ exponential marginals + 
Gaussian copula



u); in other words, Pu is just the law of X conditioned on the event {L(X) Ø u}. We show

that the distributions Pl and Pu are similar in the sense that they concentrate their mass on

identical sets, upon suitably scaling, even if the level l > 0 is only a fraction of the level u.

Figure 1 below o�ers an illustration of this self-similarity property.

Figure 1: Illustration of the notion of self-similarity of optimal IS distributions: Samples
from the distributions Pl, Pu (displayed in blue and red respectively) reveal that they share
similar concentration properties for three distribution choices of X informed by a Gaussian
copula with correlation fl. The levels l, u are such that the probabilities of L(X) exceeding
these levels are approximately 10≠3 and 10≠5.5

. The contours (drawn in green) represent level
sets of L(x) = 1|(Ax ≠ b)+ derived from a ReLU neural network with weights given by the
matrix A with rows (0.3, 1), (1, 0.3), (0, 1.1), (1.1, 0) and vector b = 0.

(a) Normal marginals, fl = 0.5 (b) Weibull marginals, fl = 0.3 (c) Exponential marginals, fl = 1
2

The distribution-oblivious transformation T (·) employed in the IS scheme is carefully

chosen such that it exploits this self-similarity property. Irrespective of the underlying prob-

ability distribution, we show that the employed transformation T (·) replicates the concen-

tration properties of the theoretically optimal IS distribution by learning from observations

which are not as rare. The notion of self-similarity utilized here is based on the theory of

large deviations and is of di�erent nature compared to the weak convergence based notion

used widely in the statistical estimation of extreme events in Embrechts et al. (1997), Resnick

(1987), de Haan & Ferreira (2010). A weak convergence based IS distribution selection is ex-

plored in Deo & Murthy (2020) and is not suited to result in asymptotically optimal variance

reduction showcased in this paper.

The main contributions of this paper can be summarized as follows.

1) (Novel & generically applicable IS) We present an entirely novel IS scheme

which exhibits asymptotically optimal variance reduction in black-box IS estimation
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Resolving the computational bottleneck

‣ A fixed elementary transformation of the samples is efficient!

‣ Suited for a broad variety of risk management models, 
including those using sophisticated predictors

‣ Ability to resolve the bottleneck in variance reduction for 
optimization models with CVaR objectives or chance-constraints

Q1: Can we have an algorithm which adapts its  
Importance Sampling distribution to the objective at hand?



‣ Debiased objective = objective with plug-in  +  a correction term 

‣ Objective has zero sensitivity to perturbations in plug-in model

Resolving the statistical bottleneck

Q2: Given a plug-in distributional model, can we have a  
procedure to “debias”  the objective? 



‣ Debiased objective = objective with plug-in  +  a correction term 

‣ Objective has zero sensitivity to perturbations in plug-in model

bias in debiased objective is only ε2
n !

Resolving the statistical bottleneck

‣ Convexity retained in the debiased objective

‣ If modeller’s choice induces a bias =  in the objective, εn
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‣ Debiased objective = objective with plug-in  +  a correction term 

‣ Objective has zero sensitivity to perturbations in plug-in model

bias in debiased objective is only ε2
n !

Resolving the statistical bottleneck

‣ Convexity retained in the debiased objective

‣ If modeller’s choice induces a bias =  in the objective, εn

Q2: Given a plug-in distributional model, can we have a  
procedure to “debias”  the objective? 

Newey and Stoker, ’93 
Murphy and van der Vaart ’97 
Van der Vaart ‘99 
Chernozhukov et al. ’16, ’17 
Foster and Syrgkanis ’19 
Newey and Ichimura ‘22

Gupta, Huang, Rusmevichientong ’21

Debiasing in Operations 
Research literature



Resolving the statistical bottleneck

Debiased objective      =      objective(  )      +      a correction term̂P

Q2: Given a distributional model, can we have an algorithm to 
“debias”  the objective of its nonparametric model error? 
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Resolving the statistical bottleneck

Debiased objective      =      objective(  )      +      a correction term̂P

‣ Debiased objective has zero sensitivity to perturbations in plug-in model

If modeller’s choice of   

induces a bias = 

̂P
Op(εn)

Debiased objective only 

carries a bias = Op(ε2
n)

‣ Convexity retained in the debiased objective!

Q2: Given a distributional model, can we have an algorithm to 
“debias”  the objective of its nonparametric model error? 



Outline of the talk

‣ Introduction 

‣ Challenges due to rarity & model-bias 

‣ Why algorithmic approaches have been elusive? 

‣ Key observation & its implications 

‣ Q1: Can a sampler adapt its IS distribution to the problem-at-hand? 

‣ Q2: Can we correct the plug-in model-bias? 

‣ Summary
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sets of L(x) = 1|(Ax ≠ b)+ derived from a ReLU neural network with weights given by the
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Some examples:
elliptical densities, 
exponential family, 
log-concave densities, 
Gaussian copula, 
t-copula,  
archimedean copula, ...
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+ light/heavy-tailed 
marginals

‣ pdf of X = exp(−φ(x))

φ(that is,    is regularly varying)

lim
n→∞

φ(nx)
φ(n1)

= φ*(x)
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‣ Heavy-tailed: 
      pdf of X is regularly varying 
               (See, eg. Resnick ’07, ’08)

‣ pdf of X = exp(−φ(x))

φ(that is,    is regularly varying)

lim
n→∞

φ(nx)
φ(n1)

= φ*(x)
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X/n satisfies a large deviations principle:

P (X ∈ nA) = exp{−tnφ*(A)+o(tn)}

and the above similarity in conditional 
excess loss distributions hold

Theorem [Deo and M '21]



‣ pdf of X = exp(−φ(x))

φ(that is,    is regularly varying)

lim
n→∞

φ(nx)
φ(n1)

= φ*(x)

Setup: Assumptions on the loss

lim
n→∞

L(nx)
nρ

= L*(x)

‣ Asymptotically homogenous loss:

level sets of L

LP, MILP, QP objectives with 
random coefficients,

losses written in terms of feature 
maps/decision rules specified with 
kernels and ReLU neural networks

⋮

Some examples:

their optimal values,



‣ pdf of X = exp(−φ(x))

φ(that is,    is regularly varying)

lim
n→∞

φ(nx)
φ(n1)

= φ*(x)

‣ Asymptotically homogenous loss:

φ*(x)

eg: + correlated multivariate normal

x1

x2

x1

x
x

x2

x1u

Large deviations mechanics: 
Intersection of level curves determine the most likely excess loss samples

{x : L*(x) ≥ 1}lim
n→∞

L(nx)
nρ

= L*(x)

samples of samples of in red: X ∣ L(X) > u

x = arg min
x:L*(x)≥1

φ*(x)
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Large deviations mechanics: 
Intersection of level curves determine the most likely excess loss samples

{x : L*(x) ≥ 1}lim
n→∞

L(nx)
nρ

= L*(x)

samples of X ∣ L(X) > l
samples of 

in blue:

samples of in red: X ∣ L(X) > u



Large deviations mechanics: 
Intersection of level curves determine the most likely excess loss samples

eg: weibull marginals, gaussian copula

x2

x1

b) I(·) is homogeneous: that is, I(⁄x) = ⁄I(x), for any ⁄ > 0, x œ R+
d ;

c) I(·) has compact level sets; specifically, infxœRd
+:xi>c I(x) = c, for all c Ø 0, i Æ d.

While the rate function I(·) is unique for a given distribution for which the tail LDP

holds, it is instructive to note that there may be multiple distributions which give rise

to the same limit I(·). Indeed, the relation “has the same rate function I(·) in the tail

LDP” is an equivalence relation, and every function I(·) satisfying properties (a) - (c) in

Lemma 3.4 specifies a equivalence class of distributions for the random vector Y . Thus, the

nonparametric nature of the limiting function I(·) o�ers a great amount of expressive power

in capturing the joint dependence features observed in the the tail regions. The hazard

functions �1(·), . . . , �d(·) in Assumption 2, on the other hand, o�er flexibility in terms of

specifying marginal distributions with various tail strengths.

Figure 2: Illustration of the level sets of I(·) capturing di�erent strengths of the positive
(indicated (+)) or negative (indicated (-)) tail correlations between the components of Y =
(Y1, Y2). Range of axes =[0,5]
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3.3 Asymptotics for P (L(X) Ø u)

In this section, we characterize the exponential rate at which P (L(X) Ø u) decays as in,

P (L(X) Ø u) = exp{≠t(u)[Iú + o(1)]}, as u æ Œ,

where the function t(u), which grows to infinity as u æ Œ, is identified in terms of the

marginal hazard functions �1, . . . , �d described in Assumption 2, and the constant I
ú is
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samples of X ∣ L(X) > l
samples of 

in blue:

samples of in red: X ∣ L(X) > u

Can we find a 
rate-point preserving transformation 

that is oblivious to the underlying 
objective and the distribution?

Back to concentration preserving transformation

{x : L*(x) ≥ 1}
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Concentration-preserving stretching

Can we find a 
rate-point preserving transformation 

that is oblivious to the underlying 
objective and the distribution?

κ(x) =
1
ρ

log |x |
log ∥x∥∞

where

s =  scalar stretch            
parameter

{x : L*(x) ≥ 1}{x : L*(x) ≥ 1}

T(x) = sκ(x)x

T*(x) = sαmin/ρ ⋅ x



where

s = scalar stretch          
parameter

Concentration-preserving stretching, in action
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(a) Gaussian marginals,
correlation= 0.5

(b) Exponential marginals,
correlation= 0.5

(c) Weibull marginals with
↵ = (0.5, 0.5), correlation= 0

(d) (e) (f)

Figure 3. Figures (A) - (C) plot independent samples from the zero-variance distri-
bution (in red) and that of the IS vector Z |L(Z) � u (in blue). Contours indicate the
level sets of the respective joint distributions. Figures (D) - (F) indicate the respective
histograms for (X) | L(Z) � u involved in the transformation Z = T (X)

More importantly, the zero variance and the IS samples tend to concentrate in the same
neighborhoods in all the three cases considered in Figures 3(A) - 3(C) as asserted by Proposition
5. Regardless of the region where the zero-variance distribution concentrates in Figures 3(A) -
3(C), the IS transformation Z = T (X) replicates the concentration in the same neighborhood
by implicitly learning from the samples which are not as rare. Indeed, the verification of
asymptotics (22a) - (22b) makes this observation rigorous in the light-tailed case.

To gain intuition behind this phenomenon, we first see that the multiplicative factor
(u/l)(x) � 1 in the transformation T (x) = (u/l)(x)x ensures that the IS vector T (X) is
more likely to take more extreme values than X. Here the exponent (X) ensures that the
components are magnified only to the extent necessary. Indeed, a quick examination by apply-
ing the definition,

(x) :=
log(1 + |x|)

⇢k log(1 + |x|)k1
,

to the red points in the respective cases in Figure 3 reveals the following observation: The
distribution of (X) |L(Z) > u concentrates in the neighborhood of the points {(1, 0), (0, 1)}
in Figure 3(F), unlike those in Figures 3(D) - 3(F) where its concentration is in the vicinity of
(1, 1). While a naive multiplication by the factor (u/l) will result in both components (X1, X2)
being magnified, the introduction of (u/l)(X) lets the conditional distribution of Z concentrate
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(a) Gaussian marginals,
correlation= 0.5

(b) Exponential marginals,
correlation= 0.5
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(c) Weibull marginals with
↵ = (0.5, 0.5), correlation= 0

(d) (e) (f)

Figure 3. Figures (A) - (C) plot independent samples from the zero-variance distri-
bution (in red) and that of the IS vector Z |L(Z) � u (in blue). Contours indicate the
level sets of the respective joint distributions. Figures (D) - (F) indicate the respective
histograms for (X) | L(Z) � u involved in the transformation Z = T (X)

More importantly, the zero variance and the IS samples tend to concentrate in the same
neighborhoods in all the three cases considered in Figures 3(A) - 3(C) as asserted by Proposition
5. Regardless of the region where the zero-variance distribution concentrates in Figures 3(A) -
3(C), the IS transformation Z = T (X) replicates the concentration in the same neighborhood
by implicitly learning from the samples which are not as rare. Indeed, the verification of
asymptotics (22a) - (22b) makes this observation rigorous in the light-tailed case.

To gain intuition behind this phenomenon, we first see that the multiplicative factor
(u/l)(x) � 1 in the transformation T (x) = (u/l)(x)x ensures that the IS vector T (X) is
more likely to take more extreme values than X. Here the exponent (X) ensures that the
components are magnified only to the extent necessary. Indeed, a quick examination by apply-
ing the definition,

(x) :=
log(1 + |x|)

⇢k log(1 + |x|)k1
,

to the red points in the respective cases in Figure 3 reveals the following observation: The
distribution of (X) |L(Z) > u concentrates in the neighborhood of the points {(1, 0), (0, 1)}
in Figure 3(F), unlike those in Figures 3(D) - 3(F) where its concentration is in the vicinity of
(1, 1). While a naive multiplication by the factor (u/l) will result in both components (X1, X2)
being magnified, the introduction of (u/l)(X) lets the conditional distribution of Z concentrate

T( )•  
T(x) = sκ(x)x

T( )•  

Multivariate normal

weibull + normal copula

excess loss samples at 1/100 risk level in blue:

in red:

1/105

1/100

1/100

1/105

excess loss samples at 1/100,000 risk level 

transported excess loss 
samples

in blue:

κ(x) =
1
ρ

log |x |
log ∥x∥∞



κ(x) =
1
ρ

log |x |
log ∥x∥∞

where

Concentration-preserving stretching, in action
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(a) Gaussian marginals,
correlation= 0.5

(b) Exponential marginals,
correlation= 0.5

(c) Weibull marginals with
↵ = (0.5, 0.5), correlation= 0

(d) (e) (f)

Figure 3. Figures (A) - (C) plot independent samples from the zero-variance distri-
bution (in red) and that of the IS vector Z |L(Z) � u (in blue). Contours indicate the
level sets of the respective joint distributions. Figures (D) - (F) indicate the respective
histograms for (X) | L(Z) � u involved in the transformation Z = T (X)

More importantly, the zero variance and the IS samples tend to concentrate in the same
neighborhoods in all the three cases considered in Figures 3(A) - 3(C) as asserted by Proposition
5. Regardless of the region where the zero-variance distribution concentrates in Figures 3(A) -
3(C), the IS transformation Z = T (X) replicates the concentration in the same neighborhood
by implicitly learning from the samples which are not as rare. Indeed, the verification of
asymptotics (22a) - (22b) makes this observation rigorous in the light-tailed case.

To gain intuition behind this phenomenon, we first see that the multiplicative factor
(u/l)(x) � 1 in the transformation T (x) = (u/l)(x)x ensures that the IS vector T (X) is
more likely to take more extreme values than X. Here the exponent (X) ensures that the
components are magnified only to the extent necessary. Indeed, a quick examination by apply-
ing the definition,

(x) :=
log(1 + |x|)

⇢k log(1 + |x|)k1
,

to the red points in the respective cases in Figure 3 reveals the following observation: The
distribution of (X) |L(Z) > u concentrates in the neighborhood of the points {(1, 0), (0, 1)}
in Figure 3(F), unlike those in Figures 3(D) - 3(F) where its concentration is in the vicinity of
(1, 1). While a naive multiplication by the factor (u/l) will result in both components (X1, X2)
being magnified, the introduction of (u/l)(X) lets the conditional distribution of Z concentrate

T( )•  
T(x) = sκ(x)x

Multivariate normal

Proposition [Deo & M ’21]. In the generality considered, 
1) the theoretically optimal sampler and  
2) the transformed excess loss samples  
concentrate their mass on the same set of points, albeit at 
different rates

s = scalar stretch          
parameter



Logarithmic efficiency

T(x) = sκ(x)x

# sample

1
β

with the 
proposed 
sampler

without 
importance 
sampling

logk 1
β

⟹ ∝
required

Theorem.

Minimizing CVaR1−β(Lθ(X)) with the
proposed  sampler is log-efficient as β → 0.



Numerical experiments
Probability of excess loss in a portfolio with 3000 loans
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Minimizing CVaR objective
Illustration of portfolio optimization objective with 15 assets

0

7500

15000

22500

30000

3/100 2/100 1.25/100 7.5/1000 5/1000 3/1000

proposed sampler 

sample-average 
approximation

tail level

samples  
required to be 

within 0.1% 
optimality gap

β

6 x

25 x



Outline of the talk

‣ Introduction 

‣ Challenges due to rarity & model-bias 

‣ Why algorithmic approaches have been elusive? 

‣ Key observation & its implications 

‣ Q1: Can a sampler adapt its IS distribution to the problem-at-hand? 

‣ Q2: Can we correct the plug-in model-bias? 

‣ Summary
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Uryasev ’02)
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data from unknown P

model for 
grey region

decision
̂P

An overview of the debiased objective

Call this  E ̂P [ ξ ]

inf
u,θ {u +

̂γ
β

E ̂P [L(X, θ) − u]+} (Rockafellar & 
Uryasev ’02)

fraction of samples in 
grey region

̂γ =

Optimize 

with ̂P

Debiased objective      =      objective(  )      +      a correction term̂P



ξ = [ L(X, θ) − u ]+

error due to model-misspecification 

        = EP [ ξ ] − E ̂P [ ξ ]

What is the correction term?



ξ = [ L(X, θ) − u ]+

* *
̂P

P
= E ̂P [ ξ

dP
d ̂P ] − E ̂P [ ξ ]

= E ̂P [ ξ ( dP
d ̂P

− 1) ]

error due to model-misspecification 

        = EP [ ξ ] − E ̂P [ ξ ]

What is the correction term?

d ̂P = e−hdP



ξ = [ L(X, θ) − u ]+

* *
̂P

P
= E ̂P [ ξ

dP
d ̂P ] − E ̂P [ ξ ]

= E ̂P [ ξ ( dP
d ̂P

− 1) ]
≈ E ̂P [ ξ ⋅ h ]

error due to model-misspecification 

        = EP [ ξ ] − E ̂P [ ξ ]

What is the correction term?

(as  log pdf  is  nearly  homogenous)

d ̂P = e−hdP

   zero mean, 
homogenous function 

if   are tail-similar 

h =

̂P, P



Restricting to self-similar class lowers variance

ξ = [ L(X, θ) − u ]+

* *
̂P

P

   zero mean, 
homogenous function 

if   are tail-similar 

h =

̂P, P

d ̂P = e−hdP

error due to model-misspecification 

        = E ̂P [ ξ ⋅ h ]



Restricting to self-similar class lowers variance

ξ = [ L(X, θ) − u ]+

* *
̂P

P

best zero mean 
homogenous function 

approximating   ξ

= E ̂P [ E ̂P [ ξ ∣ ℱ ] ⋅ h ]

   zero mean, 
homogenous function 

if   are tail-similar 

h =

̂P, P

d ̂P = e−hdP

error due to model-misspecification 

        = E ̂P [ ξ ⋅ h ]



Restricting to self-similar class lowers variance

ξ = [ L(X, θ) − u ]+

* *
̂P

P

best zero mean 
homogenous function 

approximating   ξ

= E ̂P [ E ̂P [ ξ ∣ ℱ ] ⋅ h ]

can be understood as gradient at  ̂P
(efficient influence function)

   zero mean, 
homogenous function 

if   are tail-similar 

h =

̂P, P

d ̂P = e−hdP

error due to model-misspecification 

        = E ̂P [ ξ ⋅ h ]



Restricting to self-similar class lowers variance

ξ = [ L(X, θ) − u ]+

* *
̂P

P= E ̂P [ E ̂P [ ξ ∣ ℱ ] ⋅ h ]

   zero mean, 
homogenous function 

if   are tail-similar 

h =

̂P, P

d ̂P = e−hdP

error due to model-misspecification 

        = E ̂P [ ξ ⋅ h ]

≈ EP [ E ̂P [ ξ ∣ ℱ ]]
      sample mean  of   E ̂P [ ξ | ℱ ]

  +  CLT term n−1/2

=



Can we correct plug-in model bias?

ξ = [ L(X, θ) − u ]+

* *
̂P

P

error due to model-misspecification       

  +  CLT term  
                   + sec. order terms

n−1/2

=      sample mean  of   E ̂P [ ξ | ℱ ]



Can we correct plug-in model bias?

ξ = [ L(X, θ) − u ]+

* *
̂P

P

error due to model-misspecification       

e2(x) = φ̂(x)log x − E ̂P∠x [ φ̂(X)log X ]
here    e1(x) = φ̂(x) − E ̂P∠x [ φ̂(X) ]

Evaluating  amounts to finding the best approx.  to  in the span( ) 

under the plug-in measure

E ̂P [ ξ ∣ ℱ ] ξ e1, e2

  +  CLT term  
                   + sec. order terms

n−1/2

=      sample mean  of   E ̂P [ ξ | ℱ ]



Can we correct plug-in model bias?

ξ = [ L(X, θ) − u ]+

* *
̂P

P

debiased objective

= E ̂P [ ξ ] +      sample mean  of   E ̂P [ ξ | ℱ ]

‣ Neyman orthogonal: orthogonal to model perturbations 

*
̂P

Pε
*

Derivative of the debiased 
objective w.r.to  is zeroε



Can we correct plug-in model bias?

ξ = [ L(X, θ) − u ]+

* *
̂P

P

debiased objective

= E ̂P [ ξ ] +      sample mean  of   E ̂P [ ξ | ℱ ]

‣ Neyman orthogonal: orthogonal to model perturbations 

*
̂P

Pε
*

Derivative of the debiased 
objective w.r.to  is zeroε

Plug-in objective: 

Error rates

Op (rate(N ))
Op(rate2(N ))Debiased objective: 



Can we correct plug-in model bias?

ξ = [ L(X, θ) − u ]+

* *
̂P

P

debiased objective

= E ̂P [ ξ ] +      sample mean  of   E ̂P [ ξ | ℱ ]

‣ Convexity is retained

‣ Can be understood as a first-order Taylor approximation on 
the subset of distributions with self-similar tails

‣ Neyman orthogonal: orthogonal to model perturbations 



ρ (p) ≈ ρ ( p̂) + ⟨∇ρ ( p̂), p − p̂⟩

Can we correct plug-in model bias?

ξ = [ L(X, θ) − u ]+

debiased objective

= E ̂P [ ξ ] +      sample mean  of   E ̂P [ ξ | ℱ ]

Contrast with RO / DRO

worst-case objective

(debiasing =  a targeted notion of robustness)

debiased objective

sup
∥x−p∥< δ

ρ (x) = ρ ( p̂) + δ ∥∇ρ ( p̂)∥

̂p

δ



Numerical experiments

Portfolio optimization with 5 assets, given 1000 return samples
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Numerical experiments
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Numerical experiments

Portfolio optimization with 5 assets, given 1000 return samples
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data
estimate

model decision
optimize 
min

θ
ρ(θ, ̂P)model parameters 

̂P

model-selection

Summary: The two bottlenecks

1

the need to carefully 
handle bias created by 

plugging-in a wrong 
distributional model

2

prohibitive 
computation needed 

due to large number of 
samples/scenarios



Summary: Algorithmic variance reduction with self-similar tails

model 
(objective +  
distribution)

Step 1: Propose an 
"good" distribution 

family

Step 2: Set up OPT for 
the best candidate in 

the family  sampler

informed by large 
deviations analysis

Automate, informed by large deviations

Step 3:  
Solve OPT

?

search for alternate 
distribution

search for a concentration-
preserving transformation



Applied probability, 
 rare events

Optimization under 
uncertainty

minimizing CVaR, 
chance-constraints  

with sample-averaging

Tailored efficient samplers 
for stylized QRM models 

Summary: Algorithmic variance reduction with self-similar tails



Summary: Algorithmic bias reduction with self-similar tails

‣ Debiased objective = objective ( ) +  a correction term 

‣ Objective has zero sensitivity to model perturbations

̂P

bias in debiased objective is only ε2
n !

‣ Convexity retained in the debiased objective

‣ If modeller’s choice induces a bias =  in the objective, εn

Estimate, then 
optimize

Decision-aware 
learning

Debiasing


